Tetrahedron Letters 49 (2008) 5247–5251

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Chiral azabicyclo-N-oxyls mediated enantioselective electrooxidation of sec-alcohols

Hirofumi Shiigi, Hiroyuki Mori, Tomoaki Tanaka, Yosuke Demizu, Osamu Onomura *

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

article info

Article history: Received 21 April 2008 Revised 20 June 2008 Accepted 26 June 2008 Available online 1 July 2008

Keywords: Chiral nitroxyl radical Enantioselective oxidation Optically active alcohol Electrooxidation

A B S T R A C T

Enantiomerically pure azabicyclo-N-oxyls were prepared from L-hydroxyproline. They mediated enantioselective electrooxidation of racemic sec-alcohols to afford optically active sec-alcohols with moderate to high s value (up to 21).

- 2008 Elsevier Ltd. All rights reserved.

2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO) has been uti-lized in chemical¹ and electrochemical oxidation^{[2](#page-3-0)} of alcohols as a mediator. Also, optically active N-oxyls structurally modified from TEMPO were effective for oxidative kinetic resolution of sec-alco-hols by chemical and electrochemical methods.^{[3](#page-3-0)} We have recently reported preparation of several azabicyclo-N-oxyls and their medi-atory role for electrooxidation of alcohols.^{[4](#page-3-0)} This oxidation was applicable to a transformation of sterically hindered secondary alcohols into the corresponding ketones in higher yields than those of TEMPO-mediated reactions (Eq. 1). We wish to report herein the preparation of enantiomerically pure azabicyclo-N-oxyls and their mediatory role for enantioselective electrooxidation of racemic sec-alcohols.^{[5](#page-3-0)}

The chiral azabicyclo skeleton was prepared from L-hydroxyproline as shown in Eq. [2](#page-1-0). Namely, the electrooxidation of Nmethoxycarbonyl-L-hydroxyproline ethyl ester (1) afforded methoxylated compound 2 in 94% yield, which was allylated with allyltrimethylsilane catalyzed by TiCl₄ to give allylated compound 3 as a diastereomer mixture. Alkaline hydrolysis of 3 followed by electrooxidation afforded methoxylated diastereomeric mixture 4 in 70% yield. TiCl₄-catalyzed cyclization⁶ for (2S)-isomer of **4** afforded the corresponding azabicyclo compound 5 in enantiomerically

Corresponding author. Tel.: +81 95 819 2429; fax: +81 95 819 2476. E-mail address: onomura@nagasaki-u.ac.jp (O. Onomura).

 (1)

pure form,^{[7](#page-3-0)} while (2R)-isomer of **4** did not give the corresponding cyclized product but gave polar components.

Enantiomerically pure azabicyclo-N-oxyls 7a and 7b–k attached with various O-protecting groups were synthesized by usual methods as shown in Eq. 3. The yields are summarized in Table 1. Acylation for hydroxyl group of **5** gave **6b-k**.^{[8](#page-3-0)} After N-methoxycarbonyl group of 5 and $6b-k$ were removed with Me₃SiI, successive oxidation with *m*CPBA afforded *N*-oxyls **7a–k**.^{[9](#page-3-0)}

catalytic amount of 7a–m, excess amount of sodium bromide, and a mixture of CH_2Cl_2 and saturated aqueous NaHCO₃ as solvent. After passing through 1.5 F/mol of electricity at constant current (20 mA, terminal voltage: ca. 3 V) at 0° C, acetophenone 9 and (S)-8 were obtained. The results are shown in [Table 2](#page-2-0). 0.1 equiv of N-oxyl 7a did not work as a mediator for oxidation at all (entry 1).¹³ In the case of using acetylated N-oxyl **7b**, pivaloylated **7c**, 3,5-dimethylbenzoylated $7e$, and 2-phenylbenzoylated $7f$, (S)-8

Cyclic voltammogram for 7g showed reversible wave pattern similar to that for azabicyclo-N-oxyl **A.**^{[4,10](#page-3-0)} This strongly suggests that enantiomerically pure azabicyclo-N-oxyls could also play the role of an oxidation mediator just like A (Fig. 1).

The enantioselective electrooxidation of $DL-1$ -phenylethanol (8) catalyzed with chiral azabicyclo-N-oxyls 7a–m was carried out as follows (Eq. [4](#page-2-0)).¹¹ That is, the oxidation was conducted using platinum electrodes in an undivided beaker-type cell, containing a

was recovered with low s value (entries 2, 3, 5, and 6),¹⁴ while use of benzoylated 7d afforded (S) -8 with moderate s value of 8 (entry 4). The most efficient N -oxyl 7g which was protected with

Figure 1. Cyclic voltammogram for 7g.

Table 2 Enantioselective oxidation of DL-phenylethanol (8) catalyzed by 7a–m

Entry	N-oxyl $7a-m$ (equiv)	Yield of 9(%)	Yield of recovered (S) -8 $(\%)$	% ee of $(S)-8$	S
$\mathbf{1}$	7a (0.1)	14	86	$\mathbf{0}$	
$\overline{2}$	7b(0.1)	58	33	7	
3	7c(0.1)	44	56	19	$\overline{2}$
$\overline{4}$	7d(0.1)	38	57	47	8
5	7e(0.1)	60	33	23	$\overline{2}$
6	7f(0.1)	42	57	38	$\overline{5}$
7	7g(0.1)	43	56	64	21
8	7g(0.05)	45	50	62	10
9	7g(0.2)	42	54	64	20
10	7g(0.5)	42	53	65	20
11	7h(0.1)	51	49	37	3
12	7i(0.1)	42	57	41	5
13	7j(0.1)	35	44	13	$\overline{2}$
14	7k(0.1)	50	44	27	$\overline{2}$
15	71(0.1)	43	43	42	$\overline{4}$
16	7m(0.1)	41	59	22	$\overline{2}$

1-naphthoyl group gave (S) -8 with high s value of 21 (entry 7). Other N-oxyls 7h–m were less effective than 7g (entries 11– 16).^{[15,16](#page-4-0)} Although 0.2 or 0.5 equiv of N-oxyl **7g** worked well as a

chiral mediator for the enantioselective oxidation, 0.05 equiv of 7g was somewhat ineffective for enantioselectivity (entries 8–10).

Table 3 summarizes the enantioselective oxidation of some secalcohols **10-14** mediated by **7g**, which was passed through 1.5 $F/$ mol of electricity at constant current (20 mA, terminal voltage: ca. 3 V) at $0^{\circ}C$ (Eq. 5). (S)-1-(2-Methylphenyl)ethanol ((S)-10) and (S)-1-(2,4,6-trimethylphenyl)ethanol ((S)-11) were obtained in 47% yield with 72% ee for (S) -10 (entry 1) and in 47% yield with 64% ee for (S)-11 (entry 2). Although in the case of 1-(1-naphthalenyl)ethanol (12) and 1-indanol (14) , (S) -12 and (S) -14 were obtained with low s values of 6 and 5, respectively (entries 3 and 5), 1-(2-naphthalenyl)ethanol (13) gave (S)-13 with good s value of 11 (entry 4).

[Scheme 1](#page-3-0) shows our proposed mechanism for kinetic resolution of DL-8 mediated by chiral N-oxyl 7g. The carbonyl group of N-oxoammonium ion $7g'$, which is generated by the oxidation of 7g with bromonium ion, might coordinate to the oxoammonium group. Since (R) -8 can smoothly approach $7g'$ to form the active intermediate, (R) -8 might be easily oxidized to afford

Table 3

Enantioselective oxidation of various sec-alcohols 10–14 catalyzed by 7g

Entry		sec-Alcohol	Yield of ketone (%)		Yield of recovered (S) -alcohol $(\%)$	% ee of (S) -10-14	\sqrt{S}
$\mathbf{1}$	${\bf 10}$	Me QH	15	43	$47\,$	$72\,$	18
\overline{c}	11	Me ÒН Me ² Me	${\bf 16}$	49	$47\,$	64	8
3	$\mathbf{12}$	òн	17	$40\,$	60	39	ϵ
$\overline{\mathbf{4}}$	13	OH	18	52	$45\,$	$76\,$	11
5	14	OH	19	$52\,$	$47\,$	53	5

Scheme 1. Plausible stereochemical course for kinetic resolution of DL-8.

acetophenone (9). On the other hand, the formation of intermediate composed of (S) -8 and 7g' seems to be somewhat difficult.

In summary, we report preparation of enantiomerically pure azabicyclo-N-oxyls and their mediatory role for enantioselective electrooxidation of racemic sec-alcohols. O-Protecting group on azabicyclo-N-oxyls affected the enantioselectivity for the oxidation of sec-alcohols. Further modification of chiral N-oxyls is underway.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Young Scientists (B) (19790017) from the Ministry of Education, Science, Sports and Culture, Japan, a Grant-in-Aid for Scientific Research (C) (19550109) from Japan Society for the Promotion of Science, and a Konica Minolta Imaging Science Foundation, Japan.

References and notes

- 1. Representative recent reviews: (a) de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Synthesis 1996, 1153–1174; (b) Sheldon, A. R.; Arends, W. C. E. I. Adv. Synth. Catal. 2004, 346, 1051–1076.
- 2. (a) Semmelhack, M. F.; Chou, C. S.; Cortes, D. A. J. Am. Chem. Soc. 1983, 105, 4492–4494; (b) Osa, T.; Akiba, U.; Segawa, I.; Bobbitt, J. M. Chem. Lett. 1988, 8, 1423–1426; (c) Inokuchi, T.; Matsumoto, S.; Torii, S. J. Org. Chem. 1991, 56, 2416–2421; (d) Yoshida, T.; Kuroboshi, M.; Oshitani, J.; Gotoh, K.; Tanaka, H. Synlett 2007, 2691–2694.
- 3. (a) Ma, Z.; Huang, Q.; Bobbit, J. M. J. Org. Chem. 1993, 58, 4837–4843; (b) Rychnovsky, S. D.; McLernon, T. L.; Rajapakse, H. J. Org. Chem. 1996, 61, 1194– 1195; (c) Kashiwagi, Y.; Kurashima, F.; Kikuchi, C.; Anzai, J.; Osa, T.; Bobbit, J. M. Tetrahedron Lett. 1999, 40, 6469–6472; (d) Kuroboshi, M.; Yoshihisa, H.; Cortona, M. N.; Kawakami, Y.; Gao, Z.; Tanaka, H. Tetrahedron Lett. 2000, 41, 8131–8135.
- Demizu, Y.; Shiigi, H.; Oda, T.; Matsumura, Y.; Onomura, O. Tetrahedron Lett. 2008, 49, 48–52.
- 5. We found only one literature for enantioselective chemical oxidation mediated by C₂ symmetrical azabicyclo-N-oxyls with low enantioselectivities (s value: up

to 2.5): Graetz, B.; Rychnovsky, S.; Leu, W.; Farmer, P.; Lin, R. Tetrahedron: Asymmetry 2005, 16, 3584–3598.

- 6. Physical data for 5: Colorless oil. $[\alpha]_D^{24}$ +5.6 (c 1.0, CHCl₃). IR (neat): 3480, 2955, 1705 cm^{-1} . ¹H NMR (300 MHz, CDCl₃) δ 4.42 (br s, 1H), 4.25 (d, J = 6.4 Hz, 1H), 4.11 (br s, 1H), 4.11–3.98 (m, 1H), 3.74 (s, 3H), 2.80–2.50 (br s, 1H), 2.21–1.80 (m, 6H). [HR-FAB(+)]: m/z calcd for $C_9H_{15}CINO_3$ [M+H]⁺ 220.0740: found 220.0735.
- 7. The optical purity of 5 was determined after conversion to 1-naphthoylated Noxyl 7g by chiral HPLC: Daicel Chiralcel OD-H column (4.6 mm \oslash , 250 mm), nhexane/isopropanol = 5:1, wavelength: 254 nm, flow rate: 1.0 mL/min, retention time: 12.3 min for $(6R)$ -7g, 17.4 min for $(6S)$ -7g.
- 8. The stereoconfiguration for 6g was deduced by NOE correlation.

- 9. Physical data for **7g**: Red amorphous. $[\alpha]_D^{27}$ -13.3 (c 1.0, CHCl₃). IR (neat): 2930, 1717 cm⁻¹. [HR-EI]: m/z calcd for C₁₈H₁₇ClNO₃ [M]⁺ 330.0897; found 330.0899.
- Cyclic voltammogram for 7g was measured in 0.1 M Et₄NBF₄/MeCN solution using glassy-carbon as a working electrode, platinum as a counter electrode, and $Ag/0.01$ M AgNO₃ as a reference electrode. Concentration of 7g: 1.0 mM. Scan rate: 30 mV/s. Cyclic voltammogram for other O-acyloxylated N-oxyls 7b-f,h-m showed reversible wave pattern similar to that for 7g, while that for hydroxylated N-oxyls 7a was irreversible.
- 11. Representative procedure for the enantioselective electrooxidation of secalcohols: Anodic oxidation of DL-1-phenylethanol (DL-8) was carried out using platinum electrodes $(1 \text{ cm} \times 2 \text{ cm})$ in an undivided beaker-type cell. DL-8 (61 mg, 0.5 mmol), 7g (16.5 mg, 0.05 mmol), and NaBr (206 mg, 2.0 mmol) were added into a mixture of CH_2Cl_2 (2.5 mL) and saturated aqueous NaHCO₃ (2.5 mL). After passing through 1.5 F/mol of electricity at constant current (20 mA) at 0 °C , the mixture was poured in water and extracted with AcOEt (20 mL \times 3). The combined organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The residue was purified by silica gel column

- chromatography (*n*-hexane/AcOEt = 10:1) to afford acetophenone **9** (25.8 mg, 43% yield) and (S)-**8** (34.2 mg, 56% yield) as a colorless oil.¹² coptical purity of (S)-**8** was determined by chiral purity column (4.6 mm*g* for (R) -8.
- 13. DL-8 was oxidized in the absence of N-oxyl to afford 9 with 16% yield.
-
- 14. Kagan, H. B.; Fiaud, J. C. In Topics in Stereochemistry; Eliel, E. L., Ed.; Wiley & Sons: New York, 1988; Vol. 18, pp 249–330. 15. A precursor for *N*-oxyl **71** was synthesized by $Tibr_4$ -catalyzed cyclization of **4**.
- 16. A precursor for N-oxyl 7m was synthesized by reductive dechlorination of 5.