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Enantiomerically pure azabicyclo-N-oxyls were prepared from L-hydroxyproline. They mediated enantio-
selective electrooxidation of racemic sec-alcohols to afford optically active sec-alcohols with moderate to
high s value (up to 21).
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2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO) has been uti-
lized in chemical1 and electrochemical oxidation2 of alcohols as a
mediator. Also, optically active N-oxyls structurally modified from
TEMPO were effective for oxidative kinetic resolution of sec-alco-
hols by chemical and electrochemical methods.3 We have recently
reported preparation of several azabicyclo-N-oxyls and their medi-
atory role for electrooxidation of alcohols.4 This oxidation was
applicable to a transformation of sterically hindered secondary
alcohols into the corresponding ketones in higher yields than those
of TEMPO-mediated reactions (Eq. 1). We wish to report herein the
preparation of enantiomerically pure azabicyclo-N-oxyls and their
H2Cl2/sat. aq. NaHCO3, rt

[e], 3.0 F/mol, NaBr (4.0 equiv)
or TEMPO (0.1 equiv)
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mediatory role for enantioselective electrooxidation of racemic
sec-alcohols.5

The chiral azabicyclo skeleton was prepared from L-hydroxy-
proline as shown in Eq. 2. Namely, the electrooxidation of N-
methoxycarbonyl-L-hydroxyproline ethyl ester (1) afforded meth-
oxylated compound 2 in 94% yield, which was allylated with allyl-
trimethylsilane catalyzed by TiCl4 to give allylated compound 3 as
a diastereomer mixture. Alkaline hydrolysis of 3 followed by elec-
trooxidation afforded methoxylated diastereomeric mixture 4 in
70% yield. TiCl4-catalyzed cyclization6 for (2S)-isomer of 4 afforded
the corresponding azabicyclo compound 5 in enantiomerically
O N
O
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pure form,7 while (2R)-isomer of 4 did not give the corresponding
cyclized product but gave polar components.

Enantiomerically pure azabicyclo-N-oxyls 7a and 7b–k attached
with various O-protecting groups were synthesized by usual meth-
ods as shown in Eq. 3. The yields are summarized in Table 1. Acyl-
ation for hydroxyl group of 5 gave 6b–k.8 After N-methoxycarbonyl
group of 5 and 6b–k were removed with Me3SiI, successive oxida-
tion with mCPBA afforded N-oxyls 7a–k.9
30
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Cyclic voltammogram for 7g showed reversible wave pattern
similar to that for azabicyclo-N-oxyl A.4,10 This strongly suggests
that enantiomerically pure azabicyclo-N-oxyls could also play the
role of an oxidation mediator just like A (Fig. 1).

The enantioselective electrooxidation of DL-1-phenylethanol (8)
catalyzed with chiral azabicyclo-N-oxyls 7a–m was carried out as
follows (Eq. 4).11 That is, the oxidation was conducted using plati-
num electrodes in an undivided beaker-type cell, containing a
Table 1
Preparation of enantiomerically pure N-oxyls 7a–k

Entry PG Yield of 6b–k (%) Yield of 7a–k (%)

1 H — 7a 35
2 Acetyl 6b 88 7b 65
3 Pivaloyl 6c 49 7c 50
4 Benzoyl 6d 96 7d 59
5 3,5-Dimethylbenzoyl 6e 54 7e 47
6 2-Phenylbenzoyl 6f 70 7f 30
7 1-Naphthoyl 6g 67 7g 57
8 1-(2-Methylnaphthoyl) 6h 31 7h 37
9 2-Naphthoyl 6i 75 7i 70

10 Tosyl 6j 73 7j 48
11 Phenylcarbamoyl 6k 66 7k 57
catalytic amount of 7a–m, excess amount of sodium bromide,
and a mixture of CH2Cl2 and saturated aqueous NaHCO3 as solvent.
After passing through 1.5 F/mol of electricity at constant current
(20 mA, terminal voltage: ca. 3 V) at 0 �C, acetophenone 9 and
(S)-8 were obtained. The results are shown in Table 2. 0.1 equiv
of N-oxyl 7a did not work as a mediator for oxidation at all (entry
1).13 In the case of using acetylated N-oxyl 7b, pivaloylated 7c,
3,5-dimethylbenzoylated 7e, and 2-phenylbenzoylated 7f, (S)-8
was recovered with low s value (entries 2, 3, 5, and 6),14 while
use of benzoylated 7d afforded (S)-8 with moderate s value of 8
(entry 4). The most efficient N-oxyl 7g which was protected with
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Figure 1. Cyclic voltammogram for 7g.



Table 2
Enantioselective oxidation of DL-phenylethanol (8) catalyzed by 7a–m

Entry N-oxyl
7a–m (equiv)

Yield of
9 (%)

Yield of recovered
(S)-8 (%)

% ee of
(S)-8

s

1 7a (0.1) 14 86 0 0
2 7b (0.1) 58 33 7 1
3 7c (0.1) 44 56 19 2
4 7d (0.1) 38 57 47 8
5 7e (0.1) 60 33 23 2
6 7f (0.1) 42 57 38 5
7 7g (0.1) 43 56 64 21
8 7g (0.05) 45 50 62 10
9 7g (0.2) 42 54 64 20

10 7g (0.5) 42 53 65 20
11 7h (0.1) 51 49 37 3
12 7i (0.1) 42 57 41 5
13 7j (0.1) 35 44 13 2
14 7k (0.1) 50 44 27 2
15 7l (0.1) 43 43 42 4
16 7m (0.1) 41 59 22 2

N
O

X

O

O

X = Br : 7l
 H  : 7m
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1-naphthoyl group gave (S)-8 with high s value of 21 (entry 7).
Other N-oxyls 7h–m were less effective than 7g (entries 11–
16).15,16 Although 0.2 or 0.5 equiv of N-oxyl 7g worked well as a
Table 3
Enantioselective oxidation of various sec-alcohols 10–14 catalyzed by 7g

Entry sec-Alcohol Yield of ketone (%)

1 10

Me OH

15 43

2 11

Me OH

Me Me

16 49

3 12

OH

17 40

4 13

OH

18 52

5 14

OH
19 52

sat. aq.NaHCO3/CH2Cl2, 0 

7g (0.1 equiv)
NaBr (4.0 equiv)

10-14

sec-Alcohol
Pt(+)−Pt(-), 1.5 F/mol, 20 mA
chiral mediator for the enantioselective oxidation, 0.05 equiv of
7g was somewhat ineffective for enantioselectivity (entries 8–10).
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Table 3 summarizes the enantioselective oxidation of some sec-
alcohols 10–14 mediated by 7g, which was passed through 1.5 F/
mol of electricity at constant current (20 mA, terminal voltage:
ca. 3 V) at 0 �C (Eq. 5). (S)-1-(2-Methylphenyl)ethanol ((S)-10)
and (S)-1-(2,4,6-trimethylphenyl)ethanol ((S)-11) were obtained
in 47% yield with 72% ee for (S)-10 (entry 1) and in 47% yield with
64% ee for (S)-11 (entry 2). Although in the case of 1-(1-naphthale-
nyl)ethanol (12) and 1-indanol (14), (S)-12 and (S)-14 were
obtained with low s values of 6 and 5, respectively (entries 3 and
5), 1-(2-naphthalenyl)ethanol (13) gave (S)-13 with good s value
of 11 (entry 4).

Scheme 1 shows our proposed mechanism for kinetic resolution
of DL-8 mediated by chiral N-oxyl 7g. The carbonyl group of
N-oxoammonium ion 7g0, which is generated by the oxidation of
7g with bromonium ion, might coordinate to the oxoammonium
group. Since (R)-8 can smoothly approach 7g0 to form the
active intermediate, (R)-8 might be easily oxidized to afford
Yield of recovered (S)-alcohol (%) % ee of (S)-10–14 s

47 72 18

47 64 8

60 39 6

45 76 11

47 53 5

°C

+

15-19 (S)-10-14

Ketone
Recovered 
(S)-alcohol ð5Þ
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Scheme 1. Plausible stereochemical course for kinetic resolution of DL-8.
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acetophenone (9). On the other hand, the formation of intermedi-
ate composed of (S)-8 and 7g0 seems to be somewhat difficult.

In summary, we report preparation of enantiomerically pure
azabicyclo-N-oxyls and their mediatory role for enantioselective
electrooxidation of racemic sec-alcohols. O-Protecting group on
azabicyclo-N-oxyls affected the enantioselectivity for the oxidation
of sec-alcohols. Further modification of chiral N-oxyls is underway.
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